El Sol es una estrella

Sol   Mercurio   Venus   La Tierra   Marte  Jupiter   Saturno    Urano   Neptuno    Plutón

(selecciona cualquier planeta para mas informacion)

 

Proyecto Salón Hogar

El diámetro del Sol es de 1,400.000 Km., que es más de 100 veces mayor que el diámetro de la Tierra. Su masa es más de 300,000 la de la Tierra. El Sol es un cuerpo gaseoso muy caliente compuesto de cerca de 75% hidrógeno, 25% helio, menos de 1% de oxígeno, todos los otros elementos constituyen menos del 1%. La temperatura de su superficie es de cerca de 6.000° C.

La fuente de energía en el Sol, es la fusión de núcleos de hidrógeno (protones) en núcleos de helio. En este proceso, se pierde una pequeña cantidad de masa que es transformada en energía. Esta reacción nuclear, sólo puede ocurrir en el muy caliente (15.000.000° C) y denso centro del Sol.


El Sol pierde medio millón de toneladas cada segundo en esta destrucción de masa para producir energía, pero mantendrá su actual producción de energía durante cerca de 5,000 millones de años.

Durante este largo período de tiempo, el Sol es una estrella de la secuencia principal, pero eventualmente todo el hidrógeno en el centro se habrá convertido en helio. El balance entre la fuerza de gravedad, que atrae toda la masa del Sol hacia su centro, y la fuerza debida a la energía del Sol, que empuja la materia hacia afuera, se perderá entonces. El centro se contraerá y se hará aún más caliente, mientras que la parte exterior se expandirá y se enfriará. El Sol será entonces más brillante, más frío, y mayor -- una estrella roja gigante.
Ultimadamente todas las fuentes de producción de energía llegarán a su fin, y el Sol colapsará para convertirse en un objeto muy pequeño y caliente, llamado una enana blanca.


El Ciclo Solar:

El Sol, visto desde la Tierra, rota sobre su eje en algo más de 27 días, y su actividad aumenta y disminuye en un ciclo de aproximadamente 11 años, produciendo variaciones en el campo magnético de la Tierra, y cambios en nuestra atmósfera superior (la ionosfera), que afectan la transmisión de las ondas de radio y por tanto las comunicaciones mundiales. Este ciclo de actividad fue descubierto por el astrónomo amateur Alemán Heinrich Schwabe como resultado de observaciones hechas entre 1826 y 1843; en los siguientes diez años, se estableció una relación.

Al principio de cada ciclo, las Manchas Solares ocurren el las altas latitudes del Sol (a cerca de 40° de su ecuador), y en el curso de cerca de 11 años, ocurren en latitudes cada vez menores, e incluso sobre el ecuador mismo.
Si graficamos contra el tiempo, las latitudes y duraciones de las Manchas, esto produce un 'Diagrama de Mariposa'.
El aumento y subsecuente disminución de las Manchas (cuyas áreas se expresan en millonésimas del hemisferio visible del Sol), también se muestran en este tipo de diagrama.
La forma del gráfico es muy similar a la de los gráficos correspondientes de las variaciones del campo magnético de la Tierra (el índice geomagnético), mostrando la íntima relación entre la actividad del Sol y sus efectos en la Tierra.

El período de aumento desde la fase del mínimo (durante él que las Manchas pueden estar ausentes por varias semanas) hasta la fase del máximo (cuando 20 o más grupos pueden estar presentes a la vez), dura cuatro años en promedio, y la caída hasta el próximo mínimo dura siete años. En los últimos 100 años el período de aumento ha estado entre 3,3 y 5,0 años, y el período de disminución entre 5,7 y 8,3 años, de modo que es difícil hacer predicciones sobre un período de tiempo.


Manchas Solares:

Estas regiones disturbadas se ven como marcas oscuras en la superficie del Sol. Tienen una temperatura de cerca de 4.800° C, parecen oscuras por contraste con la superficie más brillante que las rodea, cuya temperatura es de cerca de 6.000° C.

La vida de una Mancha Solar puede ser tan corta como unas pocas horas, o tan larga como varios meses. Algunas son observadas durante varias revoluciones del Sol sobre su eje, y en ese caso pueden sólo ser observadas durante cerca de la mitad de su duración, debido a que durante 13 o 14 días de la revolución de 27 días, están en el hemisferio que no resulta visible desde la Tierra.

Las Manchas Solares pueden ocurrir individualmente o en grupos, y pueden ser de muy diversos tamaños. Las Manchas Solares grandes pueden a veces ser visibles a simple vista, cuando se las ve a través de niebla, o cuando el Sol está apagado y rojo durante el amanecer o atardecer. En otros momentos el disco es demasiado brillante para observarlo directamente.
Las Manchas Solares con áreas de sólo una millonésima representan el otro extremo de la escala.

ADVERTENCIA !
NUNCA MIRE DIRECTAMENTE AL SOL !
También, es extremadamente peligroso usar binoculares o un telescopio para observar el Sol (sin filtros especiales), puesto que esto causaría ceguera permanente.


La Fotosfera, Cromosfera y Corona:

El disco aparente del Sol es llamado la Fotosfera. Puede observarse que el disco se hace menos brillante hacia el borde. Esto se llama oscurecimiento del borde. A veces, cerca del máximo de las Manchas Solares, pueden observarse áreas brillantes cercanas al borde, con frecuencia cerca de los grupos de Manchas Solares. Éstas son llamadas Fáculas.
Puede observarse que la superficie del Sol, a través de un telescopio (VEA LA ADVERTENCIA!), tiene un aspecto granular. Estos gránulos son las celdas de convección que traen la energía desde abajo de la superficie aparente.

Afuera de la Fotosfera están la Cromosfera y la Corona Solar, que sólo pueden observarse con equipos especiales o durante un eclipse total de Sol.
La Cromosfera es algo más fría que la Fotosfera, pero es más activa porque las Prominencias Solares pasan a través de ella. Éstas toman dos formas; 'durmientes', grandes estructuras arqueadas asociadas con los campos magnéticos alrededor de los grupos de Manchas Solares, y 'activas', que son eventos más violentos asociados con las prominencias Solares.
La Corona es una muy caliente (un millón de grados) extensión del Sol. Es la Corona lo que da al Sol totalmente eclipsado su bella apariencia.


Prominencias Solares:

Usualmente asociadas con las Manchas Solares, se las observa como un aumento del brillo en las áreas de hidrógeno (conocidas como Flóculos), y pueden dar lugar a estallidos de intensa radiación en la región ultravioleta del espectro Solar, que causan repentinas alteraciones ionosféricas y desvanecimientos de radio, causando la interrupción de las comunicaciones en el hemisferio iluminado de la Tierra. Las Prominencias también arrojan chorros de partículas eléctricamente cargadas que afectan el campo magnético de la Tierra, y causan 'tormentas' geomagnéticas: alteraciones que afectan las brújulas. Estas 'tormentas' son a veces acompañadas en las altas latitudes por las Auroras Boreales, o 'Luces del Norte'.

Las Prominencias Solares varían en tamaño e intensidad, las más pequeñas duran sólo unos minutos antes de que el brillo comience a desvanecerse. Estas pequeñas Prominencias no producen efectos apreciables, pero una gran Prominencia puede durar varias horas y producir desvanecimientos de radio totales o parciales durante un período correspondiente.

El Sol se formó hace unos 4500 millones de años a partir de nubes de gas y polvo que contenían residuos de generaciones anteriores de estrellas. Gracias a la metalicidad de dicho gas, de su disco circumstelar surgieron, más tarde, los planetas, asteroides y cometas del Sistema Solar.

En el interior del Sol se producen reacciones de fusión en las que los átomos de hidrógeno se transforman en helio, produciéndose la energía que irradia. Actualmente, el Sol se encuentra en plena secuencia principal, fase en la que seguirá unos 5000 millones de años más quemando hidrógeno de manera estable. Cuando el hidrógeno de su núcleo sea mucho menos abundante éste se contraerá y se encenderá la capa de hidrógeno adyacente, pero esto no bastará para retener el colapso. Seguirá compactándose hasta que su temperatura sea lo suficientemente elevada como para fusionar el helio del núcleo (unos 100 MK). Al mismo tiempo, las capas exteriores de la envoltura se irán expandiendo paulatinamente. Se expandirán tanto que, a pesar del aumento de brillo de la estrella, su temperatura efectiva disminuirá, situando su luz en la región roja del espectro.

El Sol se habrá convertido en una gigante roja. El radio del Sol, para entonces, será tan grande que habrá engullido a Mercurio, Venus y, posiblemente, a la Tierra. Durante su etapa como gigante roja (unos 1000 millones de años) el Sol irá expulsando gas cada vez con mayor intensidad. En los últimos momentos de su vida el viento solar se intensificará y el Sol se desprenderá de toda su envoltura, la cual formará, con el tiempo, una nebulosa planetaria. El núcleo y sus regiones más próximas se comprimirán más hasta formar un estado de la materia muy concentrado en el que las repulsiones de tipo cuántico entre los electrones extremadamente cercanos (degenerados) frenarán el colapso. Quedará entonces, como remanente estelar, una enana blanca de carbono y oxígeno que se irá enfriando paulatinamente.

Estructura del Sol

Como toda estrella el Sol posee una forma esférica, y a causa de su lento movimiento de rotación, tiene también un leve achatamiento polar. Como en cualquier cuerpo masivo toda la materia que lo constituye es atraída hacia el centro del objeto por su propia fuerza gravitatoria. Sin embargo, el plasma que forma el Sol se encuentra en equilibrio ya que la creciente presión en el interior solar compensa la atracción gravitatoria produciéndose un equilibrio hidrostático. Estas enormes presiones se generan debido a la densidad del material en su núcleo y a las enormes temperaturas que se dan en él gracias a las reacciones termonucleares que allí acontecen. Existe además de la contribución puramente térmica una de origen fotónico. Se trata de la presión de radiación, nada despreciable, que es causada por el ingente flujo de fotones emitidos en el centro del Sol.

El Sol presenta una estructura en capas esféricas o en "capas de cebolla". La frontera física y las diferencias químicas entre las distintas capas son difíciles de establecer. Sin embargo, se puede establecer una función física que es diferente para cada una de las capas. En la actualidad, la astrofísica dispone de un modelo de estructura solar que explica satisfactoriamente la mayoría de los fenómenos observados. Según este modelo, el Sol está formado por: 1) Núcleo, 2) Zona radiante, 3) Zona convectiva, 4) Fotosfera, 5) Cromosfera, 6) Corona y 7) Viento solar.

www.proyectosalonhogar.com