Dos vectores son ortogonales si su producto escalar es cero.
Si además de ortogonales los vectores son unitarios se llaman ortonormales.
A veces nos piden construir una base ortonormal a partir de otra base que no es ortonormal. Esto se puede hacer por el método de Gram-Schmidt.
Sea B = {b1,b2,b3} una base que no es ortonormal. Los vectores:
c1 = b1
c2 = b2 - c1.b2/c1.c1(c1)
c3 = b3 - c1.b3/c1.c1(c1)
- c2.b3/c2.c2(c2)
Los productos que hay en la fracción son productos escalares.
Ejemplo: Sea la base (1,1,1), (0,2,-1) y (1,0,2). Haciendo las operaciones indicadas nos queda:
El vector (1,1,1) se transforma en (1,1,1).
El vector (0,2,-1) se transforma en (0,2,-1) - 1/3 (1,1,1) = (-1/3, 5/3, -4/3).
El vector (1,0,2) se transforma en (1,0,2) - 3/3 (1,1,1) + 3/7 (-1/3, 5/3, -4/3)
= (-1/7, -2/7, 3/7).