S k i l l
 i n
A L G E B R A

Table of Contents | Home

22

MULTIPLYING AND DIVIDING
ALGEBRAIC FRACTIONS

The rule



TO MULTIPLY FRACTIONS, multiply the numerators and multiply the denominators.

Problem 1.   Multiply.

To see the answer, pass your mouse over the colored area.
To cover the answer again, click "Refresh" ("Reload").
Do the problem yourself first!

  a)    2
x
·   5
x
  =   10
x²
  b)    3ab
 4c
·   4a²b
 5d
  =   3a³b²
 5cd
   The 4's cancel.
  c)      3x  
x + 1
·    6x² 
x − 1
  =    18x³ 
x² − 1
   The Difference of Two Squares
  d)    x − 3
x + 1
·   x − 2
x + 1
  =   x² − 5x + 6
x² + 2x + 1
In a multiplication of this form  a·   b
c
  or    b
c
·  a,   multiply only

the numerator.


a·   b
c
 =   ab
 c

Problem 2.   Multiply.

  a)    x
·   2x
 3
  =   2x²
 3
  b)    3x²
 4
·  7x3   =  
  c)   (x + 3)·   x − 3
x + 6
  =   x² − 9
 x + 6
  d)     x² − 2x + 5 
6x² − 4x + 1
·  2x3   =  
  6x² − 4x + 1
   No canceling!

Canceling

If any numerator has a divisor in common with any denominator,
it may be canceled.

a
b
·    c
d
·   e
a
  =    ce
bd

The a's cancel.

Problem 3.   Multiply.  Cancel first.

  a)   ab
cd
·    ed
 fg
·    hcf
ake
  =   bh
gk
  b)    (x − 2)(x + 2)
        8x
·        __2x__     
(x + 2)(x − 1)
  =      x − 2 
4(x − 1)
  c)         __x³__     
(x + 2)(x + 3)
·   x + 3
  x7
  =     __1_   
(x + 2)x4
  d)    x(x + 1)
     6
·       2    
x² − 1
  =   x(x + 1)
     6
·        __2__     
(x + 1)(x − 1)
  =      _x_   
3(x − 1)
  e)   aq·   b
cq
  =   ab
 c
  f)   10·  x + 2
   2
  =   5(x + 2)   =  5x + 10
  g)  3x·  5x
 6
  =   5x²
 2
  h)    a
 b
·   1
a
  =   1
b
  The a's cancel as −1, which on multiplication with 1 makes the fraction itself negative (Lesson 4).
  Example 1.   Multiply     x² − 4x − 5
x² − x − 6
·   x² − 5x + 6
x² − 6x + 5

Solution.   Although the problem says "Multiply," that is the last thing to do in algebra!  First factor.  Then cancel.  Finally, multiply.

And remember:  Only factors cancel.

x² − 4x − 5
x² − x − 6
·   x² − 5x + 6
x² − 6x + 5
  =   (x + 1)(x − 5)
(x + 2)(x − 3)
·   (x − 3)(x − 2)
(x − 1)(x − 5)
 
    =   x + 1
x + 2
·   x − 2
x − 1
 
 
    =   x² − x − 2
x² + x − 2

Problem 4.   Multiply.

  a)       __x²__   
x² + x − 12
·   x² − 9
  2x6
  =        __x²__     
(x + 4)(x − 3)
·   (x − 3)(x + 3)
       2x6
 
    =      1   
x + 4
·   x + 3
  2x4
 
 
    =   _ x + 3 _
2x5 + 8x4
  b)    x² − 2x + 1
x² − x − 12
·   x² + x − 6
x² − 6x + 5
  =   __(x − 1)²__
(x − 4)(x + 3)
·   (x + 3)(x − 2)
(x − 1)(x − 5)
 
    =   x − 1
x − 4
·   x − 2
x − 5
 
 
    =   x² − 3x + 2
x² − 9x + 20
  c)    x² + 3x − 10
x² + 4x − 12
·   x² + 5x − 6
x² + 4x − 5
  =   (x + 5)(x − 2)
(x + 6)(x − 2)
·   (x − 1)(x + 6)
(x − 1)(x + 5)
 
    =   1  
  d)     _x³_ 
x² − 1
·   x² + x − 2
      x4
·    __x²__ 
x² + 4x + 4
  =      ___x³___   
(x + 1)(x − 1)
·   (x − 1)(x + 2)
       x4
·    __x²__
(x + 2)²
  =  
 x + 1
·      1   
x + 2
 
    =   _    _x_   _
x² + 3x + 2

Complex fractions:  Division

  A complex fraction looks like this:   

The numerator and/or the denominator are themselves fractions.

To deal with a complex fraction, we immediately apply the definition of division (Lesson 6):

a
b
  =  a·  1
b

Any fraction is equal to the numerator times the reciprocal
of the denominator.

Therefore,

  =   p
q
·   n
m
  Example 2.   Simplify   
  Solution.      =   x² − 25
   x8
·      x³ 
x − 5
    =   (x + 5)(x − 5)
        x8
·      x³ 
x − 5
 
    =   x + 5
   x5

Division -- which effectively this is -- becomes multiplication by the reciprocal.

on canceling the x + 2's.

Problem 5.   Simplify.

  a)       =    6 
x5
·   x²
8
  =     3  
4x3
  b)       =      4   
x − 1
·      1   
x − 1
  =         _4_      
x² − 2x + 1
  c)       =   (x + 2) ·   x − 2
x + 2
  =   x − 2
  d)       =   x + 2
x + 1
·   x − 2
x − 1
  =   x² − 4
x² − 1
  e)       =       −h    
x(x + h)
·   1
h
  =   −       1     
x(x + h)

The h's cancel.  And according to the Rule of Signs, the product is negative.  (It's all right to leave the product in its factored form.)

  f)       =   (x + 2)(x − 2)
       3x²
·          _x_       
(x + 2)(x + 3)
  =   x − 2
  3x
·      1   
x + 3
  =      x − 2   
3x(x + 3)

  Example 4.   Simplify   

Solution.    1-over any number is its reciprocal.  Therefore,

= 4
3

Problem 6.   Simplify the following.

  a)      =   x + 1
   x
  b)      =   x − 1

Next Lesson:  Adding algebraic fractions


Table of Contents | Home


www.proyectosalonhogar.com