S k i l l
 i n
A L G E B R A

Table of Contents | Home

17

FACTORING TRINOMIALS

1 the coefficient of x²

2nd Level

Positive leading term


FACTORING IS THE REVERSE of multiplying.  Skill in factoring, then, depends upon skill in multiplying (Lesson 16).  As for a quadratic trinomial --

2x² + 9x − 5

-- it will be factored as a product of binomials:

(?   ?)(?   ?)

Now,  how will 2x² be produced?  There is only one way:  2x· x :

(2x   ?)(x   ?)

And how will 5 be produced?  Again, there is only one way:  1·  5.  But does the 5 go with  2x  or with  x ?

(2x   5)(x   1)    or     (2x   1)(x   5) ?

Notice:  We have not yet placed any signs!

How shall we decide between these two possibilities?  It is the combination that will correctly give the middle term, 9x.

Let us consider the first possibility:

(2x   5)(x   1)

Is it possible to produce  9x  by combining the outers and the inners:  2x· 1 with 5x ?

No, it is not.  Therefore, we must eliminate that possibility and consider the other:

(2x   1)(x   5)

Can we produce  9x  by combining  10x  with x ?

Yes -- if we choose +5 and −1:

(2x − 1)(x + 5)

(2x − 1)(x + 5) = 2x² + 9x − 5

Skill in factoring depends on skill in multiplying -- particularly in picking out the middle term!

Problem 1.   Place the correct signs to give the middle term.

a)  2x² + 7x − 15 = (2x 3)(x + 5)

b)  2x² − 7x − 15 = (2x + 3)(x 5) 

c)  2x² − x − 15 = (2x + 5)(x 3) 

d)  2x² − 13x + 15 = (2x 3)(x 5) 

Note:  When the constant term is negative, as in parts a), b), c), then the signs will be different.  But when that term is positive, as in part d), the signs will be the same.  Usually, however, that happens by itself.

Nevertheless, can you correctly factor the following?

2x² − 5x + 3  = (2x − 3)(x − 1)

Problem 2.   Factor these trinomials.

a)  3x² + 8x + 5  = (3x + 5)(x + 1)

b)  3x² + 16x + 5  = (3x + 1)(x + 5)

c)  2x² + 9x + 7  = (2x + 7)(x + 1)

d)  2x² + 15x + 7  = (2x + 1)(x + 7)

e)  5x² + 8x + 3  = (5x + 3)(x + 1)

f)  5x² + 16x + 3  = (5x + 1)(x + 3)

Problem 3.    Factor these trinomials.

a)  2x² − 7x + 5  = (2x − 5)(x − 1)

b)  2x² − 11x + 5  = (2x − 1)(x − 5)

c)  3x² + x − 10   = (3x − 5)(x + 2 )

d)  2x² − x − 3   = (2x − 3)(x + 1)

e)  5x² − 13x + 6  = (5x − 3)(x − 2)

f)  5x² − 17x + 6  = (5x − 2)(x − 3)

g)  2x² + 5x − 3  = (2x − 1)(x + 3)

h)   2x² − 5x − 3  = (2x + 1)(x − 3)

i)  2x² + x − 3  = (2x + 3)(x − 1)

j)  2x² − 13x + 21  = (2x − 7 )(x −3)

k)  5x² − 7x − 6  = (5x + 3)(x − 2)

i)  5x² − 22x + 21  = (5x − 7)(x − 3)

Example 1.   1 the coefficient of x².   Factor  x² + 3x − 10.

Solution.   The binomial factors will have this form:

(x   a)(x   b)

What are the factors of 10?  Let us hope that they are 2 and 5:

x² + 3x − 10 = (x   2)(x   5)

We must now choose the signs so that the coefficient of the middle term will be +3.  Choose −2 and + 5.

x² + 3x − 10 = (x − 2)(x + 5)

Note:  When 1 is the coefficient of x², the order of the factors does not matter.

x² + 3x − 10 = (x + 5) (x − 2)

Example 2.   Factor  x² − x − 12.

Solution.   We must find factors of 12 whose algebraic sum will be the coefficient of x :  −1.  Choose −4 and + 3:

x² − x − 12 = (x − 4 )(x + 3)

Problem 4.   Factor.  Again, the order of the factors does not matter.

a)  x² + 5x + 6  = (x + 2)(x + 3)

b)  x² − x − 6  = (x − 3 )(x + 2)

c)  x² + x − 6  = (x + 3 )(x − 2)

d)  x² − 5x + 6   = (x − 3)(x − 2 )

e)  x² + 7x + 6  = (x + 1)(x + 6 )

f)  x² − 7x + 6  = (x − 1)(x − 6 )

g)  x² + 5x − 6   = (x − 1)(x + 6 )

h)  x² − 5x − 6   = (x + 1)(x − 6 )

Problem 5.   Factor.

a)   x² − 10x + 9  = (x − 1 )(x − 9)

b)  x² + x − 12  = (x + 4)(x − 3)

c)  x² − 6x − 16  = (x − 8)(x + 2)

d)  x² − 5x − 14   = (x − 7)(x + 2)

e)  x² − x − 2  = (x + 1)(x − 2)

f)  x² − 12x + 20  = (x − 10 )(x − 2)

g)  x² − 14x + 24  = (x − 12 )(x − 2)

Example 3.   Factor completely  6x8 + 30x7 + 36x6.

Solution.   To factor completely means to first remove any common factors (Lesson 15).

6x8 + 30x7 + 36x6 = 6x6(x² + 5x + 6)
 
  Continue by factoring the trinomial:
 
= 6x6(x + 2)(x + 3)

Problem 6.   Factor completely.  First remove any common factors.

a)  x3 + 6x² + 5x  = x(x2 + 6x + 5) = x(x + 5)(x + 1)

b)  x5 + 4x4 + 3x3  = x3(x2 + 4x + 3) = x3(x + 1)(x + 3)

c)  x4 + x3 − 6x²  = x²(x² + x − 6) = x²(x + 3)(x − 2)

d)  4x² − 4x − 24  = 4(x² − x − 6) = 4(x + 2)(x − 3)

e)  2x3 − 14x² − 36x  = 2x(x2 − 7x − 18) = 2x(x + 2)(x − 9)

f)  12x10 + 42x9 + 18x8  = 6x8(2x² + 7x + 3) = 6x8(2x + 1)(x + 3)

2nd Level

Example 4.   Factor by making the leading term positive.

x² + 5x − 6 = −(x² − 5x + 6) = −(x − 2)(x − 3)

Problem 7.   Factor by making the leading term positive.

a)   −x² − 2x + 3  = −(x² + 2x − 3) = −(x + 3)(x − 1)

b)   −x² + x + 6  = −(x² − x − 6) = −(x + 2)(x − 3)

c)   −2x² − 5x + 3  = −(2x² + 5x − 3) = −(2x − 1)(x + 3)

Quadratics in different arguments

Here is the form of a quadratic trinomial with argument x :

ax² + bx + c

The argument is whatever is being squared.  x is being squared.  x is the argument.  The argument appears in the middle term.

a, b, c are called constants.  In this quadratic,

3x² + 2x − 1,

the constants are  3, 2, −1.

Now here is a quadratic whose argument is x3:

3x6 + 2x3 − 1.

x6 is the square of x3.  (Lesson 13:  Exponents.)

But that quadratic has the same constants as the one above.  In a sense, it is the same quadratic only with a different argument.  For it is the constants that characterize the quadratic.

Now, since the quadratic with argument x can be factored as

3x² + 2x − 1 = (3x − 1)(x + 1),

so can the quadratic with argument x3:

3x6 + 2x3 − 1 = (3x3 − 1)(x3 + 1).

If z is the argument of any quadratic with constants 3, 2, −1, then

3z² + 2z − 1 = (3z − 1)(z + 1).

   Example 5. (z + 2)(z − 5) = z² − 3z − 10
 
    (x4 + 2)(x4 − 5) = x8 − 3x4 − 10

The trinomials on the right have the same constants   1, −3, −10   but different arguments.  That is the only difference between them.  In the first, the argument is z.  In the second, the argument is x4.

(The square of x4 is x8.)

If we read from right to left, then each quadratic is factored as

(argument + 2)(argument − 5)

Every quadratic with constants  1, −3, −10  will be factored that way.

Problem 8.

a)  Write the form of a quadratic trinomial with argument z.

az² + bz + c

b)  Write the form of a quadratic trinomial with argument x4.

ax8 + bx4 + c

c)  Write the form of a quadratic trinomial with argument xn.

ax2n + bxn + c

Problem 10.   Multiply out each of the following, which have the same constants, but different argument.

   a)   (z + 3)(z − 1) = z² + 2z − 3   b)   (y + 3)(y − 1) = y² + 2y − 3

c)  (y6 + 3)(y6 − 1)  = y12 + 2y6 − 3

d)  (x5 + 3)(x5 − 1)  = x10 + 2x5 − 3

Problem 11.   Factor each quadratic.

a)  x² − 6x + 5  = (x − 1)(x − 5)

b)  z² − 6z + 5  = (z − 1)(z − 5)

c)  x8 − 6x4 + 5  = (x4 − 1)(x4 − 5)

d)  x10 − 6x5 + 5  = (x5 − 1)(x5 − 5)

e)  x6y6 − 6x3y3 + 5  = (x3y3 − 1)(x3y3 − 5)

 f)  (x + 3)² − 6(x + 3) + 5  = (x + 3  − 1)(x + 3  − 5)
 
  = (x + 2)(x − 2)

Problem 12.   Factor each quadratic.

a)  x4x² − 2  = (x² − 2)(x² + 1)

b)  y6 + 2y3 − 8  = (y3 + 4)(y3 − 2)

c)  z8 + 4z4 + 3  = (z4 + 1)(z4 + 3)

d)  2x10 + 5x5 + 3  = (2x5 + 3)(x5 + 1)

e)  x4y² − 3x²y − 10  = (x²y + 2)(x²y − 5)

 f)  (x − 1)² − 5(x − 1) + 6  = (x − 1  − 3)(x − 1  − 2)
 
  = (x − 4)(x − 3)

Next Lesson:  Perfect Square Trinomials


Table of Contents | Home


www.proyectosalonhogar.com