CIENCIAS DE LA TIERRA Y DEL MEDIO AMBIENTE |
|
|||||||||
|
|
. |
. |
|
Energía radiante del Sol. Constante solar La mayor parte de la energía que llega a nuestro planeta procede del Sol. Viene en forma de radiación electromagnética. El flujo de energía solar que llega al exterior de la atmósfera es una cantidad fija, llamada constante solar. Su valor es de alrededor de 1,4 · 103 W/m2 (1354 Watios por metro cuadrado según unos autores, 1370 W·m-2 según otros), lo que significa que a 1 m2 situado en la parte externa de la atmósfera, perpendicular a la línea que une la Tierra al Sol, le llegan algo menos que 1,4 · 103 J cada segundo. Para calcular la cantidad media de energía solar que llega a
nuestro planeta por metro cuadrado de superficie, hay que multiplicar la
anterior por toda el área del círculo de la Tierra y dividirlo
por toda la superficie de la Tierra lo que da un valor de 342 W·m-2
que es lo que se suele llamar constante solar media.
Composición de la energía solar a) Antes de atravesar la atmósfera La energía que llega a la parte alta de la atmósfera es
una mezcla de radiaciones de longitudes de onda (l
) entre 200 y 4000 nm. Se distingue entre radiación ultravioleta,
luz visible y radiación infrarroja.
b) En la superficie de la Tierra La atmósfera absorbe parte de la radiación solar. En unas condiciones óptimas con un día perfectamente claro y con los rayos del sol cayendo casi perpendiculares, como mucho las tres cuartas partes de la energía que llega del exterior alcanza la superficie. Casi toda la radiación ultravioleta y gran parte de la infrarroja son absorbidas por el ozono y otros gases en la parte alta de la atmósfera. El vapor de agua y otros componentes atmosféricos absorben en mayor o menor medida la luz visible e infrarroja. La energía que llega al nivel del mar suele ser radiación infrarroja un 49%, luz visible un 42% y radiación ultravioleta un 9%. En un día nublado se absorbe un porcentaje mucho más alto de energía, especialmente en la zona del infrarrojo. La vegetación absorbe en todo el espectro, pero especialmente en la zona del visible. Parte de la energía absorbida por la vegetación es la que se emplea para hacer la fotosíntesis. Radiación reflejada y absorbida por la Tierra El albedo de la Tierra, es decir su brillo: su capacidad de reflejar
la energía, es de alrededor de un 0.3. Esto significa que alrededor
de un 30% de los 342 W·m-2 que se reciben (es decir algo
más de 100 W·m-2 ) son devueltos al espacio por
la reflexión de la Tierra. Se calcula que alrededor de la mitad
de este albedo es causado por las nubes, aunque este valor es, lógicamente,
muy variable, dependiendo del lugar y de otros factores.
Figura 10-13 > Balance energético en la Tierra El 70% de la energía que llega, es decir uno 240 W·m-2 es absorbido. La absorción es mayor en las zonas ecuatoriales que en los polos y es mayor en la superficie de la Tierra que en la parte alta de la atmósfera. Estas diferencias originan fenómenos de convección y se equilibran gracias a tranportes de calor por las corrientes atmosféricas y a fenómenos de vaporación y condensación. En definitiva son responsables de la marcha del clima. Los diferentes gases y otros componentes de la atmósfera no absorben de igual forma los distintos tipos de radiaciones. Algunos gases, como el oxígeno y el nitrógeno son transparentes a casi todas las radiaciones, mientras que otros como el vapor de agua, dióxido de carbono, metano y óxidos de nitrógeno son transparentes a las radiaciones de corta longitud de onda (ultravioletas y visibles), mientras que absorben las radiaciones largas (infrarrojas). Esta diferencia es decisiva en la producción del efecto invernadero. El tipo de radiación que emite un cuerpo depende de la temperatura a la que se encuentre. Apoyándose en este hecho físico las observaciones desde satélites de la radiación infrarroja emitida por el planeta indican que la temperatura de la Tierra debería ser de unos -18ºC. A esta temperatura se emiten unos 240 W·m-2, que es justo la cantidad que equilibra la radiación solar absorbida. La realidad es que la temperatura media de la superficie de la Tierra es de 15ºC, a la que corresponde una emisión de 390 W·m-2 . Los 150 W·m-2 de diferencia entre este valor y los 240 W·m-2 realmente emitidos son los que son atrapados por los gases con efecto invernadero y por las nubes. Esta energía es la responsable de los 33ºC de diferencia. La radiación de un cuerpo a elevadas temperaturas está formada por ondas de frecuencias altas. Este es el caso de la radiación procedente del sol y en una elevada proporción traspasa la atmósfera con facilidad. La energía remitida hacia el exterior, desde la Tierra, al proceder de un cuerpo mucho más frío, está en forma de ondas de frecuencias mas bajas, y es absorbida en parte por los gases con efecto invernadero. Bajo un cielo claro, alrededor del 60 al 70% del efecto inverndero es producido por el vapor de agua. Después de él son importantes, por este orden, el dióxido de carbono, el metano, ozono y óxidos de nitrógeno. No se citan los gases originados por la actividad humana que no afectan, lógicamente, al efecto invernadero que hemos llamado natural. El papel de las nubes (gotitas de agua suspendidas en la atmósfera) es doble. Por una parte el efecto invernadero es mayor que en un cielo despejado, pero, por otra parte, reflejan la luz que viene del sol. De media, para el conjunto de la Tierra, se calcula que su acción de calentamiento por efecto del aumento invernadero supone unos 30 W·m-2 , mientras que su acción de enfriamineto por el reflejo de parte de la radiación es del orden de 50 W·m-2 , lo que supone un efecto neto de enfriamiento de unos 20 W·m-2. |
Tema10: Contaminación de la atmósfera >> Cambio climático y efecto invernadero >> Balance de energía en la tierra y efecto invernadero |
|
|