Progresiones aritméticas

Progresión aritmética

Es una sucesión de números en la que cada término, excepto el primero, se obtiene sumando al anterior otro número fijo. Este número fijo se llama diferencia.

Es fácil demostrar que el término general es:

an = a1 + d(n-1)

y la suma de n términos es:

S = (a1 + an) . n / 2

Mi padre me ha contado esta historia: En un pequeño pueblo de Alemania (Brunswick), un profesor castigaba a sus alumnos haciéndoles sumar números consecutivos (por ejemplo sumar los 100 primeros números naturales). Era un duro castigo, pues había que hacer muchas sumas (1 + 2 = 3, 3 + 3 = 6, 6 + 4 = 10, 10 + 5 = 15,...) y era fácil equivocarse. Pero... una vez, uno de los niños le dio la solución en un tiempo sorprendente, el profesor le preguntó ¿cómo lo has hecho? El niño le dijo: 1 + 100= 101, 2 + 99 = 101, 3 + 98 = 101,... siempre suma 101 y hay 50 sumas, en total 50 * 101 = 5050. El profesor quedó tan impresionado que le regaló un libro de Aritmética.

Ese niño tenía 10 años y se llamaba Carl Friedrich Gaüs. Fue uno de los mas grandes matemáticos.

 

 

Volver a página principal.