L  a  G r a n  E n c i c l o p e d i a   I l u s t r a d a  d e l   P r o y e c t o  S a l ó n  H o g a r

 

 

 

CAPITULO XXXIII

 

La ofrenda que el Califa Al—Motacén hizo al Hombre que Calculaba. Beremiz rechaza oro, cargos y palacios. Una petición de mano. El problema de “Los ojos negros y azules”. Beremiz determina mediante un raciocinio el color de los ojos de cinco esclavas.

Terminada la exposición hecha por Beremiz sobre los problemas propuestos por el sabio libanés, el sultán, después de conferenciar en voz baja con dos de sus consejeros, habló así:

—Por la respuesta dada, ¡oh calculador!, a todas las preguntas, te hiciste acreedor al premio que te prometí. Dejo, pues, a tu elección: ¿Quieres recibir veinte mil dinares de oro o bien prefieres un palacio en Bagdad? ¿Deseas el gobierno de una provincia o bien ambicionas el cargo de visir en mi corte?

—¡Rey generoso!, respondió Beremiz profundamente emocionado. No ambiciono riquezas, títulos, honores o regalos, porque sé que nada valen los bienes materiales. La fama que pueden dar los cargos de prestigio no me seduce, pues mi espíritu no sueña con la gloria efímera del mundo. Si, pese a todo, es vuestro deseo hacer que me envidien todos los musulmanes, como antes dijisteis, mi petición es la siguiente: Deseo casarme con la joven Telassim, hija del jeque Iezid Abul—Hamid .

La inesperada petición formulada por el Calculador, causó un asombro indecible. Por los rápidos comentarios que pude oír noté que todos los musulmanes allí presentes quedaron convencidos de que Beremiz estaba rematadamente loco.

—Está loco ese hombre… murmuró tras de mí el viejo flaco de la túnica azul. ¡Está loco! Desprecia la riqueza, rechaza la gloria. ¡Y todo por casarse con una muchacha a quien nunca vio!

—Este mozo está alucinado, comentó el hombre de la cicatriz. Repito: alucinado. Pide una novia que tal vez lo deteste. ¡Por Allah, Al Latif!

—¿Será la baraka de la alfombrita azul?, comentó en voz baja y con cierta malicia el capitán Sayeg. ¿A que ha sido la baraka de la alfombrita?

—¡Qué baraka ni qué diablos!, exclamó en voz muy baja el viejecito. ¡No hay baraka capaz de vencer un corazón de mujer!

Yo oía aquellos comentarios fingiendo tener la atención muy lejos de allí.

Al oír la petición de Beremiz, el Califa frunció el entrecejo y se quedó muy serio. Llamó a su lado al jeque Iezid, y ambos —Califa y jeque— conversaron sigilosamente durante unos instantes.

¿Qué iba a resultar de aquella grave consulta? ¿Estaría el jeque de acuerdo con el inesperado noviazgo de su hija?

Transcurridos unos instantes, el Califa habló así, en medio de un profundo silencio:

—No pondré, ¡oh calculador!, ninguna oposición a tu romántico y feliz matrimonio con la hermosa Telassim. Este mi preciado amigo, el jeque Iezid, a quien acabo de consultar, te acepta por yerno. Reconoce que eres hombre de carácter, educado y profundamente religioso. Bien es verdad que la bella Telassim estaba prometida a un jeque damasceno que se halla ahora combatiendo en España. Pero si ella misma desea cambiar el rumbo de vida, no seré yo quien cambie su destino. ¡Maktub! ¡Estaba escrito! La fecha, suelta en el aire, exclama llena de alegría: “Por Allah, ¡soy libre!, ¡soy libre!. Pero se engaña, pues tiene su destino marcado por la puntería del tirador. ¡Así es la joven Flor del Islam! Abandona a un jeque opulento y noble, que podría ser mañana gran visir o gobernador, y acepta como esposo a un sencillo y modesto calculador persa. ¡Maktub! ¡Sea lo que Allah quiera!

El poderoso Emir de los árabes hizo una pausa y luego prosiguió, enérgico:

—Impongo sin embargo una condición. Tendrás, ¡oh eximio matemático!, que resolver ante los nobles que aquí se hallan un curioso problema inventado por un derviche de El Cairo. Si resuelves ese problema, te casarás con Telassim. En caso contrario, tendrás que desistir para siempre de esa fantasía loca de beduino borracho, y nada recibirás de mí. ¿Aceptas las condiciones?

—¡Emir de los Creyentes!, replicó Beremiz con seguridad y firmeza. Sólo deseo conocer el problema de que me hablas a fin de poder solucionarlo con los prodigiosos recursos del cálculo y del análisis…

Y el poderoso Califa le respondió:

—El problema, en su expresión más sencilla, es el siguiente: Tengo cinco hermosas esclavas. Las compré hace pocos meses a un príncipe mongol. De esas cinco encantadoras jóvenes, dos tienen los ojos negros, y las tres restantes los ojos azules. Las dos esclavas de ojos negros dicen siempre la verdad cuando se las interroga. Las esclavas de ojos azules, son en cambio mentirosas, nunca dicen la verdad. Dentro de unos minutos esas cinco jóvenes serán conducidas a este salón: todas llevan el rostro cubierto por un tupido velo. El haic que les cubre la cara hace imposible descubrir el menor de sus rasgos. Tendrás que descubrir e indicar, sin error, cuáles son las que tienen los ojos azules y cuáles tienen ojos negros. Podrás interrogar a tres de las cinco esclavas, pero sólo podrás hacer una pregunta a cada joven. Con las tres respuestas obtenidas tendrás que solucionar el problema, y deberás justificar la solución con todo el rigor matemático. Las preguntas, ¡oh calculador!, deberán ser de naturaleza que sólo las propias esclavas sean capaces de responder con perfecto conocimiento.

Momentos después, bajo la mirada curiosa de los circunstantes, aparecieron en el gran salón de las audiencias las cinco esclavas de Al—Motacén. Se presentaron cubiertas con largos velos negros desde la cabeza hasta los pies. Parecían verdaderos fantasmas del desierto.

—Aquí están, dijo el Emir con cierto orgullo. Aquí están las cinco jóvenes de mi harém. Dos, como ya he dicho, tienen los ojos negros, y solo dicen la verdad. Las otras tres tienen los ojos azules y mienten siempre.

—¡Fíjense qué desgracia!, dijo el viejecito flaco. ¡Fíjense en mi mala suerte! La hija de mi tío tiene los ojos negros, negrísimos, ¡y se pasa el día mintiendo!

Aquella observación me pareció inoportuna. El momento era grave, muy grave, y no admitía bromas. Afortunadamente nadie hizo el menor caso de las palabras maliciosas del viejo impertinente y hablador. Beremiz sintió que había llegado el momento decisivo de su carrera, el punto culminante de su vida. El problema formulado por el Califa de Bagdad, además de original y difícil, podría presentar dificultades y dudas imprevistas.

El Calculador podría preguntar con libertad a tres de las muchachas. ¿Cómo iba a poder descubrir por las respuestas el color de los ojos de todas ellas? ¿A cuáles de ellas debería interrogar? ¿Cómo determinar las dos que iban a quedar fuera del interrogatorio?

Había una indicación precisa: las de ojos negros siempre dicen la verdad; las otras tres —las de ojos azules— mienten siempre, invariablemente.

¿Bastaría eso?

Supongamos que el Calculador interroga a una de ellas. La pregunta debería ser de tal naturaleza que solo la esclava interrogada supiera responder. Obtenida la respuesta, seguiría en pie la duda. ¿Habría dicho la verdad la interrogada? ¿Habría mentido? ¿Cómo comprobar el resultado si él no conocía la respuesta cierta?

El caso era realmente muy serio.

Las cinco embozadas se colocaron en fila en medio del suntuoso salón. Se hizo el silencio. Nobles musulmanes, jeques y visires acompañaban con vivo interés la solución de aquel nuevo y singular capricho del monarca.

El Calculador se acercó a la primera esclava —que se hallaba a la derecha, en el extremo de la fila— y le preguntó con voz firme y tranquila:

—¿De qué color son tus ojos?

—¡Por Allah! La interpelada respondió en lengua china, totalmente desconocida para los musulmanes presentes. Yo no comprendí ni una palabra de la respuesta.

Ordenó el Califa que las respuestas fueran dadas en árabe puro, y en lenguaje simple y preciso.

Aquel inesperado fracaso vino a agraviar la situación de Beremiz. Le quedaban solo dos preguntas, pues la primera ya se consideraba enteramente perdida para él.

Beremiz, a quien el fracaso no había desalentado, se volvió hacia la segunda esclava y la interrogó:

—¿Cuál es la respuesta que acaba de dar tu compañera?

Y respondió la segunda esclava:

—Dijo: “Mis ojos son azules”.

Esta respuesta no aclaraba nada. ¿Habría dicho la verdad esta segunda esclava, o bien seguiría mintiendo? ¿Y la primera? ¿quién podría confiar en sus palabras?

La tercera esclava —que se hallaba en el centro de la fila— fue interrogada seguidamente por Beremiz:

—¿De qué color son los ojos de esas dos jóvenes a las que acabo de interrogar?

A esta pregunta —la última que podría ser formulada— respondió la esclava:

—La primera tiene los ojos negros, y la segunda los ojos azules.

¿Sería verdad? ¿Habría mentido?

Lo cierto es que Beremiz, después de meditar un momento, se acercó tranquilo al trono, y declaró:

—Comendador de los Creyentes, Sombra de Allah en la Tierra: el problema propuesto está resuelto por entero, y su solución puede ser anunciada con absoluto rigor matemático. La primera esclava —a la derecha— tiene los ojos negros. La segunda tiene los ojos azules. La tercera tiene los ojos negros, y las dos últimas tienen los ojos azules.

Alzando los velos, y retirados los pesados haics, las jóvenes aparecieron sonrientes, con los rostros descubiertos. Se oyó un iallah de sorpresa en el gran salón. ¡El inteligente Beremiz había dicho, con precisión admirable, el color de los ojos de todas ellas!

—¡Por los méritos del Profeta!, exclamó el rey. llevo propuesto este problema a centenares de sabios, ulemas, poetas y escribas y, al fin, es este modesto calculador el único que lo resuelve. ¿Cómo llegaste a esta solución? ¿Cómo demuestras que en la respuesta final no había la menor posibilidad de error?

Interrogado así por el generoso monarca, el Hombre que Calculaba repuso:

—Al formular la primera pregunta: “¡Cuál es el color de tus ojos?”, sabía que la respuesta de la esclava sería fatalmente la siguiente: “¡Mis ojos son negros!. Pues si tuviera los ojos negros diría la verdad, es decir: “Mis ojos son negros” y si tuviera los ojos azules, mentiría y por lo tanto diría también: “Mis ojos son negros”. Luego la respuesta de la primera esclava sólo podía ser única, muy concreta y absolutamente cierta e indudable: “¡Mis ojos son negros!”.

Hecha pues la pregunta, esperé aquella respuesta que ya previamente conocía. La esclava, al responderme en un dialecto desconocido, me ayudó de manera prodigiosa. Realmente, alegando no haber entendido el enrevesado idioma, interrogué a la segunda esclava: “¿cuál fue la respuesta que acaba de darme tu compañera?”. Y la segunda me dijo: “Sus palabras fueron: Mis ojos son azules”. Esta respuesta venía a demostrarme que la segunda mentía, pues, como queda ya indicado, en ningún caso podía ser ésa la respuesta de la primera esclava. Ahora bien, si la segunda esclava mentía, tenía los ojos azules. Fijaos, ¡oh rey!, en esta particularidad notable para resolver el complicado enigma. De las cinco esclavas, había ya en este momento al menos una cuya incógnita había quedado resuelta con absoluto rigor matemático. Era la segunda. Había mentido, luego tenía los ojos azules. Quedaban sin embargo aún por responder cuatro incógnitas del problema.

Aproveché la tercera y última pregunta y me dirigí a la esclava que se hallaba en el centro de la fila preguntándole: “¿De qué color son los ojos de las dos jóvenes a las que acabo de interrogar?”. Y obtuve la siguiente respuesta: “La primera tiene los ojos negros, y la segunda tiene los ojos azules”. Pues bien, con relación a la segunda yo ya no tenía la menor duda, como queda dicho. ¿Qué conclusión había de extraer pues de la tercera respuesta recibida? Muy sencilla. La tercera esclava no mentía, pues acababa de confirmarme lo que ya sabía: que la segunda tenía los ojos azules. Si la tercera no mentía, sus ojos eran negros y sus palabras eran expresión de la verdad, es decir: la primera esclava tenía los ojos negros. Fue fácil deducir que las dos últimas, por exclusión —a semejanza de la segunda— tenían los ojos azules.

Puedo asegurar, ¡oh rey del Tiempo!, que en este problema, aunque no aparecen fórmulas, ecuaciones o símbolos algebraicos, la solución cierta y perfecta tiene que ser lograda por medio de un razonamiento riguroso y puramente matemático.

Quedaba resuelto el problema del Califa. Pero Beremiz tendría que resolver muy pronto otro problema mucho más difícil: Telassim, el sueño de una noche de Bagdad.

¡Alabado sea Allah, que creó la Mujer, el Amor y las Matemáticas!

 

 

 

www.proyectosalonhogar.com